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Abstract

In this note we compare two different mathematical hyperbolic models in dual-phase-lag heat conduction proposed by Tzou, and we
ask for the parameter regions where stability can be expected. It is demonstrated that the parameter regions for the two lag-parameters sq
and sh are different for the two models. That is, for certain parameters, in one model stability is expected while for the other one it is
known that it is not stable. The first apparent contradiction is contrasted with the fact that known values for real materials (several met-
als are considered here) are in a range where both models predict stability or non-stability, respectively. Still, as a conclusion, one model
should be considered only in a restricted parameter region.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There are several hyperbolic theories of heat conduc-
tion, also called theories of second sound, where the prop-
agation of heat is modeled with finite propagation speed, in
contrast to the classical model using Fourier�s law leading
to infinite propagation speed of heat signals, see the survey
by Chandrasekharaiah [1] or the books of Müller and Rug-
geri [4] and Jou et al. [3].

In 1995, Tzou [11] proposed a theory of heat
conduction,

ht þ divq ¼ 0 ð1:1Þ
with temperature h and heat flux vector q, in which the
Fourier law is replaced by an approximation of the
equation
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qðx; t þ sqÞ ¼ �krhðx; t þ shÞ; sq > 0; sh > 0; ð1:2Þ

where k > 0, and sq is the phase-lag of the heat flux and sh
is the phase-lag of the gradient of the temperature. The
relation (1.2) states that the gradient of temperature at a
point in the material at time t + sh corresponds to the heat
flux vector at the same point at time t + sq. The delay time
sh is caused by microstructural interactions such as phonon
scattering or phonon–electron interactions. The delay sq is
interpreted as the relaxation time due to fast-transient ef-
fects of thermal inertia. The corresponding thermoelastic
model was proposed in [1]. Instead of Fourier�s law, being
equivalent to assuming

sq ¼ sh ¼ 0

and leading to the classical parabolic equation of heat con-
duction together with the physical paradoxon of infinite
propagation speed, we consider the model proposed by
Tzou [11], where a second-order approximation for q and
a first-order approximation for h is used, turning (1.2) into

qþ sqqt þ
s2q
2
qtt ¼ �krh� kshrht ð1:3Þ
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and hence turning (1.1) into the following hyperbolic equa-
tion for the temperature:

s2q
2
httt þ sqhtt þ ht ¼ kDhþ kshDht. ð1:4Þ

In this note, we discuss all the possibilities proposed, up to
now, for the dual-phase-lag heat conduction theory. Eq.
(1.3) is the Taylor expansion of Eq. (1.1) up to the first-order
with respect to the parameters sh and up to the second-order
with respect to sq. This derivation produces a hyperbolic
equation. We note that in the absence of the supply terms,
Eq. (1.4) agrees (see [12, p. 3234]) with the hyperbolic equa-
tion obtained for the two-step radiation heating model
proposed by Qiu and Tien [6].

A natural question is the determination of the time
parameters sq and sh. We believe that mathematical analy-
sis could help to reveal several conditions on the parame-
ters. One condition to be satisfied by a heat conduction
equation is the stability of its solutions. We recall that a
system is stable if solutions are bounded for all times.
Otherwise, we say that the system is unstable. That is the
solution becomes unbounded when time increases. There-
fore, we expect that the parameters which define a heat
equation must be such that the system is stable. This note
is addressed to clarify this aspect in the case of the dual-
phase-lag theories.

For Eq. (1.4), together with appropriate initial and
boundary conditions, Quintanilla [7] has shown that the
system is (even exponentially) stable if

x :¼ sh
sq

>
1

2
ð1:5Þ

holds, and that it is not (exponentially) stable if

x <
1

2
ð1:6Þ

holds. The case x = 1 is not discussed explicitly in [7] but is
expected to lead to exponential stability, cf. Section 2. The
exponential stability has also been shown for one-dimen-
sional corresponding systems of dual-phase-lag thermo-
elasticity, see the author�s papers [8,9].

As Tzou notes in his paper [12, p. 3237]: From a consis-
tent mathematical point of view, the second-order expansions

in sh and sq should also involve a second-order time derivative

in s2h . . . resulting in an equation of parabolic type.
Thus, taking second-order approximations both for the

temperature and the heat flux, we have to replace (1.3) by

qþ sqqt þ
s2q
2
qtt ¼ �krh� kshrht � k

s2h
2
rhtt ð1:7Þ

which turns (1.1) into the following equation for the
temperature:

s2q
2
httt þ sqhtt þ ht ¼ kDhþ kshDht þ k

s2h
2
Dhtt. ð1:8Þ

For the two Eqs. (1.4) and (1.8) we shall compare the pos-
sible regions for (sh,sq) to yield stability. We shall see that
they are essentially different, that is, there is an open set of
parameter values for which in one system stability is ex-
pected while in the other it has been proved that there is
no stability.

As a consequence of a unique physical behavior, for real
materials with these parameter values, only one of the
models can be justified. Fortunately, it turns out that for
classes of materials as metals like copper, silver, gold or
lead, for which the parameter values have been determined,
the values are in the set where both models predict the
same.

The paper is organized as follows: In Section 2 we
review the results by Quintanilla [7] on (exponential) stabil-
ity for the system (1.4) in terms of the eigenvalues of the
characteristic polynomial. The investigation of the system
(1.8), also in terms of the eigenvalues, is done in Section
3. The comparison is presented in Section 4. Some conclu-
sions end the note in Section 5.

2. The model (1.4) revisited

In [7] it was shown by energy methods that the system
governed by the differential equation (1.4) for Dirichlet
boundary conditions is exponentially stable provided
(1.5) holds, and, using the Hurwitz criterion, that it is not
exponentially stable if (1.6) holds.

The conditions (1.5) and (1.6) can be easily understood
looking, as in [7, Section 5], at the roots of the characteris-
tic polynomial associated to (1.4), where we denote by (kn)n
the eigenvalues of the Laplace operator �D for Dirichlet
boundary conditions in a bounded reference configuration
X:

b3 þ 2

sq
b2 þ 2þ 2kshkn

s2q
bþ 2kkn

s2q
¼ 0. ð2:1Þ

That is, if we look for solutions of Eq. (1.4) of the form
exp(bt)Un(x), where Un is the eigenfunction to the eigen-
value kn of the problem

DUn þ knUn ¼ 0; in X; Un ¼ 0; on oX;

then b satisfies Eq. (2.1), and purely imaginary b = ia, a
real, would express oscillatory behavior.

By the Hurwitz criterion, all three roots of the
polynomial

b3 þ l1b
2 þ l2bþ l3 ¼ 0

have negative real parts if and only if

lj > 0; j ¼ 1; 2; 3; l1l2 > l3 ð2:2Þ
holds. For (2.1) this conditions turns into

knk
2sh
sq

� 1

� �
þ 2

sq
> 0

which is not satisfied uniformly in kn if and only if (1.6)
holds. That is, we have recalled the characterization of
exponential stability from [7].

We remark that the discussion of the eigenvalues and
looking for the supremum of the real parts to be strictly less
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than zero, is in general not sufficient for the corresponding
system (semigroup) to be exponentially stable. For infinite
dimensional systems, in contrast to ordinary differential
equations, the supremum of the spectrum does not describe
the so-called type of the semigroup, cf. the discussion in
[5,10] and the references therein. But for appropriate
boundary conditions, it can be shown by special analysis,
as for thermoelasticity with second sound under the Catta-
neo model, see [2], that the type of the semigroup is really
determined by the supremum of the real parts of the spec-
trum. Our discussion of stability in the next sections con-
tinues in the discussion of the spectrum.
3. The model (1.8)

Now we turn to the second model represented by the dif-
ferential equation (1.8). The characteristic polynomial now
reads as

b3 þ 2

sq
þ ks2hkn

s2q

 !
b2 þ 2

s2q
þ 2kshkn

s2q

 !
bþ 2kkn

s2q
¼ 0 ð3:1Þ

and by the criterion (2.2) the following inequality has to
hold uniformly in kn:

k2n
k2s3h
s2q

" #
|fflfflffl{zfflfflffl}

¼:A

þkn k
s2h
s2q

� 1þ 2sh
sq

 !" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:B

þ 2

sq|{z}
¼:C

> 0. ð3:2Þ

Since A and C are strictly positive, a sufficient condition is
to have B P 0 which turns into

sh
sq

P
ffiffiffi
2

p
� 1 ð3:3Þ

which is already a condition being different from (1.5) and
gives a larger expectation for stability since

ffiffiffi
2

p
� 1 < 1

2
.

Now let B < 0, i.e. let x <
ffiffiffi
2

p
� 1. Then we expect stabil-

ity if

f ðyÞ :¼ Ay2 þ By þ C > 0; ð3:4Þ
uniformly in kn, i.e. if the largest zero (if there is any real
zero at all) of the polynomial f is less than the smallest
eigenvalue k1.

Case I:

B2 < 4AC. ð3:5Þ
In this case f does not have real zeros, hence (3.4) is satis-
fied. The condition (3.5) is equivalent to

gðxÞ :¼ x4 � 4x3 þ 2x2 � 4xþ 1 < 0; ð3:6Þ
where x denotes as before the ration sh

sq
. The zeros of g as a

polynomial in x are

~x1 ¼ i; ~x2 ¼ �i; ~x3 ¼ 2þ
ffiffiffi
3

p
; ~x4 ¼ 2�

ffiffiffi
3

p
.

Hence, in view of (3.5), x has to satisfy

2�
ffiffiffi
3

p
< x < 2þ

ffiffiffi
3

p
.

That is, for values (sh,sq) with

x > 2�
ffiffiffi
3

p
ð3:7Þ

we are already in the expected region of stability.
Case II:

B2 P 4AC. ð3:8Þ
In this case we have to consider the region where
x 6 2�

ffiffiffi
3

p
, and to see when the largest positive zero of f

is less than k1. This is equivalent to

�Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
< 2Ak1;

or

B2 � 4AC < ð2Ak1 þ BÞ2

or, equivalently again,

x4 � 4x3 þ 2x2 � 4xþ 1 < ðx2ð1þ 2kshk1Þ þ 2x� 1Þ2.
Hence

hðxÞ :¼ x2 ð2kshk1Þ2 þ 4kshk1
� �

þ 8ð1þ kshk1Þx� 4kshk1 > 0

ð3:9Þ
is a necessary and sufficient condition. The zeros x̂1=2 of h as
a polynomial in x are

x̂1=2 ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kshk1Þ2 þ ðkshk1Þ2 þ ðkshk1Þ3

q
� ð1þ kshk1Þ

kshk1ð1þ kshk1Þ
.

Since x̂2 < 0 we obtain from (3.9) the following condition
on x:

x >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kshk1Þ2 þ ðkshk1Þ2 þ ðkshk1Þ3

q
� ð1þ kshk1Þ

kshk1ð1þ kshk1Þ
.

ð3:10Þ
This condition can be a real restrictive condition, e.g. for sq
being large in comparison to sh. On the other hand, the
right-hand side of (3.10) tends to zero if k1 tends to zero,
as well as if k1 tends to infinity. This means, that for a fixed
material, the condition (3.10) is satisfied if the domain is
small or large enough, since the smallest eigenvalue depends
on the size of the domain. For example, in one space dimen-
sion, if the domain is the interval (0,L) with L > 0, one has

kn ¼
n2p2

L2
.

That is, for a fixed material we have

9l0; L0 > 0 8 L 62 ½l0; L0� : (3.10) holds. ð3:11Þ
We remark that a condition of the last type is known e.g.
for equations of the type

wt � wxx � lw ¼ 0; in ð0;1Þ � ð0; LÞ;
where l > 0, and for Dirichlet boundary conditions. We
have (exponential) stability if and only if

l < k1 ¼
p2

L2
.
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Summarizing the considerations of this section, we are in
the regime of stability if

x ¼ sh
sq

> 2�
ffiffiffi
3

p
ð3:12Þ

or if

x 6 2�
ffiffiffi
3

p
and (3.10) holds ð3:13Þ

and the condition (3.10) is for one-dimensional domains
(0,L)—for fixed (sh,sq)—satisfied if L is small enough or
large enough, respectively; more generally in higher dimen-
sions: if the first eigenvalue of the Dirichlet Laplacian is
small or large enough, respectively.

Obviously, the characterization of the stability region is
quite different from that of the model discussed in the pre-
vious section. A comparison and conclusions for the mod-
elling and for real materials is following.
4. Comparisons

As shown in the last two sections there are regions, for
which the model (1.4) predicts non-stability while the
model (1.8) predicts stability, for example (but not only) if

2�
ffiffiffi
3

p
< x <

1

2
. ð4:1Þ

Since the physical behavior is either stable or not, only one
of the model can describe the situation correctly. This
problem becomes a void issue for applications only if for
real materials one is always in the region where both mod-
els predict the same behavior.

From the work of Tzou [12] (in [11] the values are given
slightly different, but this does not affect the reasoning), we
take the following values for sh and sq, measured in pico-
seconds, for the metals copper, silver, gold and lead:
sh sq

Cu 70.833 0.4648
Ag 89.286 0.7838
Au 89.286 0.7838
Pb 12.097 0.1720
For the four metals the ratio x of the lag-parameters is
(much) larger than 1

2
, i.e. we are not in any ambiguous

region. Thus for these examples both models are fine.
Not knowing the ratio x for all materials, it might be useful
to keep the characterizations of our paper in mind. More-
over, for numerical calculations the limiting regions of sta-
bility are also good to know.

Finally, we remark that we can also compare the two
models above with the situation where (a) both for the heat
flux and for the temperature just a first-order approxima-
tion is used:

qþ sqqt ¼ �krh� kshrht; ð4:2Þ
or where (b) we take a first-order approximation for the
heat flux, but a second-order approximation for the tem-
perature, i.e.

qþ sqqt ¼ �krh� kshrht � k
s2h
2
rhtt. ð4:3Þ

In case (a) the equation for h resulting from (1.1) and (4.2)
is

sqhtt þ ht ¼ kDhþ kshDht. ð4:4Þ
It is worth recalling several recent contributions to this
equation (see [13–15]). Here the characteristic polynomial
to this equation of viscoelastic type

b2 þ 1þ kshkn
sq

bþ kkn
sq

has two roots

b1=2 ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kshÞ2 � 4sqkkn

q
� ð1þ kshÞ

2sq

which have real parts being negative, uniformly in kn. That
is, no condition arises on the lag-parameters for stability.

In case (b) we obtain for h the differential equation

sqhtt þ ht ¼ kDhþ kshDht þ k
sh
2
Dhtt ð4:5Þ

with characteristic polynomial

b2 þ 2ð1þ kshknÞ
2sq þ ks2hkn

bþ 2k
2sq þ ks2hkn

with two zeros

b1=2 ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kshknÞ2 � 2kð2sq þ ks2hknÞ

q
� ð1þ kshknÞ

2sq þ ks2hkn

that are also have negative real parts which are bounded
away from zero uniformly in kn. That is, again we do not
have any restriction for the ratio of the lag-parameters.

5. Conclusion

In this short note we have analyzed the range of the
parameters sh and sq for different kind of approximations
in the dual-phase-lag theory in order to guarantee that
the solutions of the corresponding heat equation are stable.
We have seen that:

1. When we approximate until first-order in sq and until
first or second-order in sh, the system is always stable.

2. When we approximate until second-order in sq and only
until first-order in sh, the system is stable if sh/sq > 1/2
and unstable if sh/sq < 1/2.

3. When we approximate until second-order both in sh and
in sq, the system is stable if sh=sq > 2�

ffiffiffi
3

p
. If sh=sq <

2�
ffiffiffi
3

p
and the quotient x = sh/sq satisfies condition

(3.10), we are also in the stability regime.
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4. Whenever sh/sq > 1/2, the several models predict the
same behavior.
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